Abstract

The fate of microplastics (MPs) in the sewage treatment process has been investigated worldwide, and novel results have been reported; few studies have also clarified the fate of MPs in the sewage sludge treatment process. Although most MPs in sewage are transferred to sludge, some flow back from the sludge treatment process to the sewage treatment process. Therefore, throughout the sewage treatment plant, the removal rate of MPs may increase via a countermeasure during the sludge treatment process. In this study, samples obtained from sewage and sewage sludge treatments were used to degrade organic matter with hydrogen peroxide. Water sample particles were trapped on Ni filters with 20-μm-sized pores, dried at room temperature and then the MPs were detected and identified by FTIR microscopy. Note that sludge samples were treated with hydrogen peroxide and separated by specific gravity using NaI solution. The concentration of MPs per unit volume was then calculated and the MPs load was estimated using flow rates of water and sludge. Subsequently, we clarified the fate of MPs with sizes of 20 μm or greater in a sewage treatment plant. When the MPs load in the influent sewage is 100%, 12% of the MPs were found to return to the sewage treatment process via the sidestream of the sludge treatment process. Per this observation, it was made evident that MPs are in fact circulating throughout the sewage and sludge treatment processes. MPs in the sidestream mainly consisted of the effluent from the sludge concentration process, and most MPs were thought to be fibrous polyethylene terephthalate (fibrous MPs, i.e. microfibers [MFs]). The results show that MFs circulate throughout the sewage and sludge treatment processes, and for effectively increasing the removal rate of MPs, the removal of MFs proves correspondingly effective during the sludge treatment process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.