Abstract

Cysteine oxidation in protamines leads to their oligomerization and contributes to sperm chromatin compaction. Here we identify the Drosophila thioredoxin Deadhead (DHD) as the factor responsible for the reduction of intermolecular disulfide bonds in protamines and their eviction from sperm during fertilization. Protamine chaperone TAP/p32 dissociates DNA-protamine complexes in vitro only when protamine oligomers are first converted to monomers by DHD. dhd-null embryos cannot decondense sperm chromatin and terminate development after the first pronuclear division. Therefore, the thioredoxin DHD plays a critical role in early development to facilitate the switch from protamine-based sperm chromatin structures to the somatic nucleosomal chromatin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.