Abstract
Short arginine-rich proteins called protamines mediate the near crystalline DNA packaging in most vertebrate sperm cells. Protamines are synthesized during spermiogenesis and condense the paternal genome into a transcriptionally inactive state in late-stage spermatids. Protamines from eutherian mammals, including bulls and humans, also contain multiple cysteine residues that form intra- and interprotamine sulfur-sulfur bonds during the final stages of sperm maturation. Although the cross-linked protamine network is known to stabilize the resulting nucleoprotamine structure, little is known about the role of disulfide bonds on DNA condensation in the mammalian sperm. Using small angle x-ray scattering, we show that isolated bull nuclei achieve slightly lower DNA packing densities compared to salmon nuclei despite salmon protamine lacking cysteine residues. Surprisingly, reduction of the intermolecular sulfur-sulfur bonds of bull protamine results in tighter DNA packing. Complete reduction of the intraprotamine disulfide bonds ultimately leads to decondensation, suggesting that disulfide-mediated secondary structure is also critical for proper protamine function. Lastly, comparison of multiple bull collections showed some to have aberrant x-ray scattering profiles consistent with incorrect disulfide bond formation. Together, these observations shed light on the biological functions of disulfide linkages for in vivo DNA packaging in sperm chromatin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.