Abstract

Maize plants (Zea mays L. cv. Honeycomb F-1) were grown on quartz sand containing amounts of Cd or Cu which resulted in comparable internal contents in the roots. Fresh and dry weights and the content of Cd or Cu were measured in roots and shoots after eight weeks. In addition, cysteine, γ-glutamylcysteine (γEC), glutathione (GSH) and the thiols in heavy-metal-binding peptides (HMBPs) were determined in the roots. At low internal contents, Cd and Cu inhibited root growth to the same extent. Inhibition by Cu was enhanced, however, at high internal contents, indicating that Cu was more toxic than Cd. Separation of extracts from roots of Cd- and Cutreated plants on a Sephadex G-50 column resulted in HMBP complexes with relative molecular masses (Mrs) of 6200 and 7300, respectively. Separation of these HMBP-complexes using HPLC resulted in a distinct pattern of thiol compounds for each heavy metal. The accumulation of HMBPs was linearly dependent on the content of Cd at all values examined. In Cu-treated roots, HMBP accumulation was linearly dependent on the internal Cu content only up to 7.1 μmol·g−1 dry weight. At internal contents which caused an enhanced inhibition of root growth, no further significant increase in the HMBP content was detected. At these internal Cu contents an increased transport of Cu to the shoot was measured. This result indicates that HMBPs are involved in reducing heavy-metal transport from roots to shoots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.