Abstract

AbstractPhotoinduced syntheses offer significant advantages over conventional thermal strategies, including improved control over reaction kinetics and low synthesis temperatures, affording nanoparticles with nontrivial and thermodynamically unstable structures. However, the photoinduced syntheses of non‐metallic nanocrystalline products (such as metal sulfides) have not yet been reported. Herein, we demonstrate the first photoinduced synthesis of ultrafine (sub‐2 nm) Ag2S quantum dots (QDs) from Ag nanoparticles at 10 °C. By thorough investigation of the mechanism for the transformation, a fundamental link was established between the intrinsic structures of the molecular intermediates and the final Ag2S products. Our results confirm the viability of low‐temperature photochemical approaches in metal sulfide synthesis, and demonstrate a new rule which could be followed in it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.