Abstract

A visible-light-driven photoelectrochemical (PEC) sensor has been developed for the “signal-on” analysis of Hg2+ by the synergetic combination of low-bandgap Ag2S and wide-bandgap ZnS quantum dots (QDs). Ag2S QDs were synthesized with bead-chain-like structure by the self-assembly route and further covalently bound with ZnS QDs to be coated onto the indium tin oxide (ITO) electrodes. It was discovered that the ZnS@Ag2S-modified electrodes could display the visible-light-driven PEC behavior, of which Ag2S and ZnS QDs could act as the PEC sensitizer and Hg2+-recognition probe, respectively. More importantly, the photocurrent responses of the developed electrodes could be specifically turned on in the presence of Hg2+ under the visible-light irradiation, presumably due to that Hg2+ might conduct a Zn-to-Hg exchange on ZnS QDs to trigger the formation of HgS/ZnS@Ag2S heterojunction towards the enhanced electron-hole separation. The as-prepared PEC sensor could facilitate the detection of Hg2+ with concentrations ranging from 0.010–1000 nM, with a detection limit of about 1.0 pM. Besides, the feasibility of practical applications of the developed PEC analysis strategy was verified by probing Hg2+ in environmental water samples. Such a visible-light-driven PEC detection platform with the unique “turn-on” signal output may promise for the extensive applications for Hg2+ evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.