Abstract

AbstractA novel pyrene‐substituted thioethyl‐porphyrazine (PzPy) and the formation of supramolecular assembly with nanocarbons demonstrating photoinduced electron transfer ability are designed. As revealed by spectroscopic and electrochemical studies, PzPy displays wide spectral absorption in the visible range, charge separation upon photoexcitation, as well as bandgap and highest occupied/lowest unoccupied molecular orbital (HOMO/LUMO) energy values, matching the key requirements of organic optoelectronic. Moreover, the presence of a pyrene moiety promotes attractive interactions with π‐conjugated systems. In particular, theoretical calculations show that in the PzPy the HOMO and LUMO are localized on different positions of the molecule, i.e., the HOMO on the pyrene moiety and the LUMO on the macrocycle. Therefore, HOMO–LUMO excitation gives rise to a charge separation, preventing excitons recombination. Two kinds of noncovalent hybrid composites are prepared by mixing the PzPy with single‐wall carbon nanotubes (SWNTs) and graphene nanoflakes (GNFs), respectively, and used for photocurrent generation through charge transfer processes between PzPy and nanocarbons. Photoconduction experiments show photocurrent generation upon visible light irradiation of both PzPy/SWNT and PzPy/GNF composites (0.78 and 0.71 mA W−1 at 500 nm, respectively), demonstrating their suitability for optoelectronic applications and light harvesting systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.