Abstract
Owing to thioether diverse physicochemical properties by non-covalent interactions with bio-macromolecules, thioether derivatives containing heterocyclic moiety are known for their interesting insecticidal bioactivities and attracting considerable attention as neuroactive insecticides. Here we synthesis a series of novel thioether bridged N-phenylpyrazole derivatives incorporating various (hetero)aromatic substituents into 4-position of the pyrazole ring. Structure-activity relationship (SAR) studies resulted in compounds 6d and 7d with the most potent insecticidal activity among the series containing various substituted benzene substituents (LC50 = 13.70–25.47 μg/g). Further optimization to increase the lipophilicity and charge density of aromatic substituents of compounds 6d and 7d resulted in compounds 12d, 14d and 16d with sulfur-containing heterocycle substituents possessing good insecticidal activity against Musca domestica L. among the series (LC50 = 0.67–1.30 μg/g). The thioether bridge N-phenylpyrazole derivatives, which exhibit different length of the spacer arm introduced between N-phenylpyrazole moiety and the (hetero)aromatic substituents, were also prepared and evaluated. By contrast, the insecticidal activities of compounds containing the short thioether bridge, 1,2-bis((hetero)aromatic thio) ethane, are higher than that containing the long thioether bridge, 1,3-bis((hetero)aromatic thio) propane. The results of molecular docking and pharmacophore analyses indicated A299, T303, and L306 of a subunit were essential to form non-covalent interactions contacts with the ligands. Specially, the sulfur-containing heterocycle substituent derivatives 12d and 14d as the sterically favored areas could form the important hydrophobic interactions with the deeper residue P295.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have