Abstract
Arsenic toxicity and mobility in groundwater depend on its aqueous speciation. Uncertainty about the methods used for measuring arsenic speciation in sulfate-reducing environments hampers transport and fate analyses and the development of in situ remediation approaches for treating impacted aquifers. New anion-exchange chromatography methods linked to inductively coupled plasma mass spectrometry (ICP-MS) are presented that allow for sample/eluent pH matching. Sample/eluent pH matching is advantageous to prevent thioarsenic species transformation during chromatographic separation because species protonation states remain unaffected, hydroxyl-for-bisulfide ligand substitution is avoided, and oxidation of reduced arsenic species is minimized. We characterized model and natural solutions containing mixtures of arsenic oxyanions with dissolved sulfide and solutions derived from the dissolution of thioarsenite and thioarsenate solids. In sulfidic solutions containing arsenite, two thioarsenic species with S/As ratios of 2:1 and 3:1 were important over the pH range from 5.5 to 8.5. The 3:1 thioarsenic species dominated when disordered As2S3 dissolved into sulfide-containing solution at pH 5.4. Together with the preferential formation of arsenite following sample dilution, these data provide evidence for the formation and detection of thioarsenite species. This study helps resolve inconsistencies between spectroscopic and chromatographic evidence regarding the nature of arsenic in sulfidic waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.