Abstract

Both thioarsenites and thioarsenates have been demonstrated to exist in sulfidic waters, yet there is uncertainty regarding the geochemical conditions that govern the formation of these arsenic species. The purpose of this research was to use advanced spectroscopy techniques, speciation modeling, and chromatography to elucidate the chemical speciation of arsenic in sulfidic solutions initially containing arsenite and sulfide. Results of X-ray absorption spectroscopy (XAS) show that experimental solutions contained mixtures of arsenite and thioarsenites with increasing substitution of sulfur for oxygen on arsenic as the sulfide concentration increased. Experimental samples showed no evidence of polymeric arsenic species, or transformation of thioarsenites to thioarsenates. The arsenic speciation measured using XAS was similar to predictions obtained from a thermodynamic model for arsenic speciation, excluding thioarsenate species in sulfidic systems. Our data cast some doubt on the application of chromatographic methods for determining thioarsenates and thioarsenites (or mixtures) in natural waters in cases where the arsenic oxidation state cannot be independently verified. The same chromatographic peak positions proposed for thioarsenates can be explained bythioarsenite species. Furthermore, sample dilution was shown to change the species distribution and care should be taken to avoid sample dilution prior to chromatographic analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.