Abstract

In this study, a facile electrochemical sensing platform based on thin-layer MoS2 and thionin (MoS2-Thi) composites was constructed for the sensitive and rapid detection of zearalenone (ZEA) in human biofluids. MoS2-Thi composites with a thin-layer MoS2 structure and large specific surface area were synthesized via a simple ultrasound exfoliation method. To further enhance the performance of the platform but without increasing the complexity of the fabrication process, ZEA antibodies were modified with Pt nanoparticles (Pt NPs) using an environmentally friendly method, where they had a much wider linear range and four times higher sensitivity compared with the original ZEA monoclonal antibody (ZEA-MAb). Under the optimal conditions, the electrochemical responses of the MoS2-Thi composite-based immunosensor were linear (R2 = 0.9915) when the ZEA concentrations ranged from 0.01 to 50 ng mL−1. The proposed immunosensor could detect ZEA at concentrations as low as 0.005 ng mL−1 with excellent selectivity. The immunosensor exhibited acceptable stability with high reproducibility and accuracy, and it was applied successfully for determining ZEA in human plasma and urine samples. Our findings indicated that the proposed MoS2-Thi composite-based electrochemical sensing platform provides a new approach for the rapid and sensitive bioanalysis of ZEA, and it may also be extended to other mycotoxins for multiplex detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.