Abstract

As technology progresses, new approaches for the development of antenna systems must be developed. This study reveals a concept for a left-handed metamaterial-inspired compact triband antenna for use in wireless fidelity (WiFi), wireless local area networks (WLANs), and World Interoperability for Microwave Access (WiMAX) applications. The Microwave Studio computer technology simulation package was used to design and perform a numerical investigation on the metamaterial-inspired antenna on a thin layer of FR-4 dielectric material. The overall size of the antenna is 25 mm × 18 mm, and it is compatible with existing wireless devices. Results were measured in the frequency bands for wireless fidelity (2.41 GHz to 2.48 GHz), wireless local area networks (2.40 GHz to 2.49 GHz and 3.65 GHz to 3.69 GHz), and world interoperability for microwave access (3.30 GHz to 3.80 GHz). The measured average gain was 1.87 dBi, whereas the simulated gain was 1.93 dBi, associated with omnidirectional radiation patterns. The timing performance was analyzed, revealing fidelity factors for the face to face, side by side X, and side by side Y orientation of 0.76, 0.84, and 0.81, respectively. Finally, the operation bandwidth, antenna gain, omnidirectional radiation pattern, and fidelity factors of the timing performance reveal that the designed miniatured metamaterial antenna can be used in WiFi, WLAN, and WiMAX applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call