Abstract

Demonstrated are visible GaN-based light-emitting diodes (LEDs) on economical large-area Si substrates using an advanced device and packaging architecture to improve optical output power, while reducing manufacturing costs. The process employs thin-film-flip-chip devices and wafer-level chip-scale packages and uses through-Si-via substrate and anisotropic conductive film for bonding. The improved curvature control region is applied in the epitaxial growth of the LED structure on a Si substrate to achieve flat wafers for epitaxial structures at room temperature, which is critical for wafer-level bonding. External quantum efficiency and light-output power at 350 mA increase by $\sim 12$ % compared with those of conventional flip-chip LEDs grown on a sapphire substrate. The devices also show a reverse-bias leakage current failure rate of <10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.