Abstract

Abstract Attempt has been made to join borosilicate glass and cycloolefin (COP) polymer film by using gas adsorption method. After corona plasma treat, COP was exposed to (3-glycidoxypropyl) trimethoxysilane (GPS) and glass to (3-aminopropyl) triethoxysilane (APS) both in air atmosphere, resulting in co-adsorption of water vapor in the atmosphere and organosilane gases. Surface characterization of plasma treated and gas adsorbed surfaces was carried out by X-ray photoelectron spectroscopy (XPS) using Mg K α X-ray source. Joining was carried out by a roll laminator after contact of both surfaces at room temperature, followed by annealing at 130 °C for 10 min. Adhesion strength was evaluated by 180 degree peel test based on ASTM D-903 and durability was examined under the conditions of 60 °C and 95% RH. It was found that after plasma treatment, complex functional groups such as C H, C O, C O, O C O and CO 3 were found on COP and O H on glass. Thickness of GPS gas adsorption layer on COP was evaluated by the XPS to be at least 1.1 nm by taking inelastic mean free path of Si 2p photoelectron into consideration. Joining force was found to be more than 5 N/25 mm corresponding to almost equal to COP bulk tensile strength. In addition, durability of this adhesion strength remained unchanged over 2000 h even after exposure to the durability test conditions of 60 °C and 95% RH. The results can be explained in terms of formation of H H hydrogen bonding and Si O covalent bonding via silanols will be made at the interface as a result of lamination and annealing processes. In conclusion, ultrathin joining method by gas adsorption was established by the formation of hydrogen and covalent bonds at the interface by low temperature reaction process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.