Abstract
As thin-layer burning of fuels on water are often followed by thin-layer boilover fires, particularly during the firefighting process, an experimental and numerical study was undertaken to address key aspects of such fires, especially in plateau areas (i.e., sub-atmospheric pressure). In the thin-layer boilover experiments at sub-atmospheric pressure (69 kPa), diesel was used as the fuel in five circular steel trays (ranging from 0.4 m to 1.2 m in diameter) and a square steel tray (side length of 2.5 m). The burning process, and especially the continuous boilover stage, was presented and the corresponding boilover intensity, time to boilover onset and boilover time interval were measured and analyzed. The results show that the flame height increased sharply at the initial boilover, while this increasing range gradually became weak for the subsequent boilovers. The initial boilover intensity showed a linear dependency on the fuel layer thickness at the time of boilover, and the slope of the boilover intensity line decreased with increasing pan area. Eventually, the effect of pan area on boilover intensity became limit. Moreover, a predictive model for the boilover intensity was established based on dimensionless analysis. The initial boilover onset time under the sub-atmospheric pressure was delayed compared with that under atmospheric pressure. The corresponding predictive correlation (for 69 kPa) with different diameter and fuel thickness was developed based on the one-dimension two-layer conduction model. In the end, the boilover time interval decreased with the boilover times, closing to uninterrupted boilover eventually. This work enriches the thin-layer boilover behavior experimental data at sub-atmospheric pressure and provides guidance for the fuel storage safety.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have