Abstract

Typical hydrodynamic lubrication problems commonly encountered in the ultrathin spacing between a computer flying head and a magnetic disk are reviewed. In magnetic disk storages, minimizing the spacing between the head and disk is essential to promote the largest possible increase in magnetic bit density. In the small (nearly 1.0 μm) spacing that has recently been attained, the rarefaction effects owing to the molecular mean free path become dominant. Specifically, in this paper the three governing equations resulting from the first- and second-order slip-flow models and from the linearized Boltzmann equation are compared. Next, some numerical approaches to eliminating the instability in pressure distribution in the high bearing number region are described. Surface roughness effects are also a principal concern in thin spacing. A mixed lubrication model which enables the analysis of the start/stop operation and the average film thickness theory for one- and two-dimensional roughnesses is summarized. Finally, from the viewpoint of practical head design, the slider dynamic characteristics and related slider design factors are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.