Abstract

This paper presents an RF microelectromechanical system switched capacitor which is based on a thin-film alu minum circular beam geometry that exhibits reduced sensitivity to both initial residual stress and stress changes versus ambient temperature. This novel design results in a pull-in voltage slope of -55 mV/°C from -5°C to 125°C, a capacitance ratio of 20 (Cu =50 fF, Cd = 1 pF), a down-state quality factor of 85 at 3127 MHz (Zd = -j50 Ω), and a switching time of <; 10 μs from 25°C to 95°C. The device symmetry also facilitates low-series-inductance compact device arrays for high-value capac itances. Both 2×2 and 3×2 device arrays are demonstrated with down-state capacitances of 3.95 and 5.89 pF, which result in switched impedances of 135-4 Ω and 91-3 Ω at 0.3-10 GHz, respectively. The array impedances vary as 1/ω over a 33:1 frequency range, with down-state quality factors of 50-60 at 541-806 MHz (Zd = -j50 Ω). The application areas are in high-linearity RF/microwave switches, phase shifters, and tunable matching networks and filters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.