Abstract

An approach is proposed to develop recording materials for high speed phase change optical data storage. It utilizes a thin film alloy mixture between a stoichiometric GeSbTe alloy and an additive ternary telluride alloy. Selection rules for an additive alloy are suggested. For a test, (Ge1Sb2Te4)1−x(Sn1Bi2Te4)x thin films are deposited by co-sputtering and their structural and thermal properties are studied. Ge1Sb2Te4 and Sn1Bi2Te4 are found to form a completely soluble pseudo-binary system, whose crystalline lattice parameters obey Vegard’s rule over the entire range of x (0<x<1). Furthermore, the alloy mixtures display an increasing tendency for crystallization with Sn1Bi2Te4 content. Dynamic tests of disk samples are made to show the effectiveness of the approach for high speed erasure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.