Abstract

Finite-element solutions for the fundamental thickness shear mode and the second-anharmonic overtone of a circular, 1.87-MHz AT-cut quartz plate with no electrodes are presented and compared with previously obtained results for a rectangular plate of similar properties. The edge flexural mode in circular plates, a vibration mode not seen in the rectangular plate is also presented. A 5-MHz circular and electroded AT-cut quartz plate is studied. A portion of the frequency spectrum is constructed in the neighborhood of the fundamental thickness-shear mode. A convergence study is also presented for the electroded 5-MHz plate. A new two-dimensional (2-D) technique for visualizing the vibration mode solutions is presented. This method departs substantially from the three-dimensional (3-D) ;wire-frame' plots presented in the previous analysis. The 2-D images can be manipulated to produce nodal line diagrams and can be color coded to illustrate mode shapes and energy trapping phenomenon. A contour plot of the mass-frequency influence surface for the plated 5-MHz resonator is presented. The mass-frequency influence surface is defined as a surface giving the frequency change due to a small localized mass applied to the resonator surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.