Abstract

In this letter, the inter-poly dielectric (IPD) thickness, scaling, and reliability characteristics of Al2O3 and HfO2 IPDs are studied, which are then compared with conventional oxide/nitride/oxide (ONO) IPD. Regardless of deposition tools, drastic leakage current reduction and reliability improvement have been demonstrated by replacing ONO IPD with high-permittivity (high-kappa) IPDs, which is suitable for mass production applications in the future. Moreover, metal-organic chemical vapor deposition (MOCVD) can be used to further promote dielectric reliability when compared to reactive-sputtering deposition. By using the MOCVD, the charge-to-breakdown (QBD) can be significantly improved, in addition to enhanced breakdown voltage and effective breakdown field. Our results clearly demonstrate that high- IPD, particularly deposited by MOCVD, possesses great potential for next-generation stacked-gate Flash memories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.