Abstract

We fabricated (Ba 0.6Sr 0.4)TiO 3 (BST) thin films of various thicknesses on sapphire (−1 1 2 0) substrates using metal-organic decomposition method. These films showed grain growth from 160 to 650 nm with an increase in the thickness from 90 to 1050 nm. At microwave frequencies, the measured capacitances of the planar capacitors decreased with the film thickness because the electro-magnetic field propagates across high permittivity BST films to the low permittivity sapphire substrate. However, we found that the BST-thin film permittivity remained large up to 90 nm thick, based on electro-magnetic field analysis using the finite element method. On the other hand, the BST thin film tunability decreased with the film thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call