Abstract

Monochromatized synchrotron radiation of the electron storage ring BESSY II has been used for the non-destructive thickness determination of nanolayered materials by two different methods. The aim of these investigations was the comparison of completely reference-free fundamental parameter-based X-ray fluorescence analysis with X-ray reflectometry to validate the quantification of X-ray fluorescence analysis as an absolute method. For this purpose, Cu and Ni layers with a thickness varying between 5 nm and 50 nm as well as double layers of both metals deposited on Si have been studied. In X-ray reflectometry characterization experiments, the tunability of the photon energy allows the determination of not only the total layer thickness but also the individual layer thicknesses of the Cu/Ni double-layer systems. Reference-free X-ray fluorescence analysis involves both the fundamental parameter approach and the knowledge of all relevant experimental parameters obtained by instrumentation calibrated absolutely. The layer thickness determined by both methods agreed within their combined uncertainties. In view of the limits of X-ray reflectometry for very thin layers, laterally inhomogeneous samples, and multi-elemental layer compositions, reference-free X-ray fluorescence analysis offers the potential for the thickness determination of such samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.