Abstract
The influence of the thickness on the vortex instability of nanocrystalline γ-Mo2N thin films is analyzed. The samples were grown on Si (100) using reactive sputtering. The quasiparticle relaxation time for films with thickness between 7 and 26 nm is analyzed in the framework of Larkin–Ovchinnikov instability by performing current-voltage curves. Considering self-heating effects due to finite heat removal from the substrate, we determine a fast quasiparticle relaxation time τ ≈ 50 ps for all the samples at low temperatures. On the other hand, close to Tc, the vortex velocity becomes magnetic field-independent, and τ increases from ≈ 40 to 110 ps as the films are made thicker. The results are discussed considering the disorder's contribution and the bridges' geometry on the vortex instability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have