Abstract
Abstract The Jacurici Complex, located in the NE part of the Sao Francisco Craton, hosts the largest chromite deposit in Brazil. The mineralized intrusion is considered to be a single N-S elongated layered body, disrupted into many segments by subsequent deformation. The ore is hosted in a thick, massive layer. Two segments, Ipueira and Medrado, have been previously studied. We provide new geological information, and chromite composition results from the Monte Alegre Sul and Varzea do Macaco segments located farther north, and integrate these with previous results. The aim of this study is to determine and discuss the magma chamber process that could explain the formation of the thick chromitite layer. All segments exhibit similar stratigraphic successions with an ultramafic zone (250 m thick) hosting a 5–8 m thick main chromitite layer (MCL), and a mafic zone (40 m thick). The chromite composition of the MCL, Mg -numbers (0.48–0.72) and Cr -numbers (0.59–0.68), is similar to chromites from layered intrusions and other thick chromitites. Previous work concluded that the parental magma of the mineralized intrusion was very primitive based on olivine composition (up to Fo 93 ) and orthopyroxene composition (up to En 94 ) from harzburgite samples, and that it originated from an old subcontinental lithospheric mantle. We estimate that the melt from which the massive chromitite layer crystallized was similar to a boninite, or low siliceous high-Mg basalt, with a higher Fe/Mg ratio. The petrologic evidence from the mafic-ultramafic rocks suggests that a high volume of magma flowed through the sill, which acted as a dynamic conduit. Crustal contamination has previously been considered as the trigger for the chromite crystallization, based on isotope studies, as the more radiogenic signatures correlate with an increase in the volumetric percentage of amphibole (up to 20%). The abundant inclusions of hydrous silicate phases in the chromites from the massive ore suggest that the magma was hydrated during chromite crystallization. Fluids may have played an important role in the chromite formation and/or accumulation. However, the trigger for chromite crystallization remains debatable. The anomalous thickness of the chromitite is a difficult feature to explain. We suggest a combined model where chromite crystallized along the margins of the magma conduit, producing a semi-consolidated chromite slurry that slumped through the conduit forming a thick chromitite layer in the magma chamber where layered ultramafic rocks were previously formed. Subsequently, the conduit was obstructed and the resident magma fractionated to produce a more evolved composition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have