Abstract

We present gain, dark current and excess noise characteristics of PIN Al0.85Ga0.15As0.56Sb0.44 (hereafter AlGaAsSb) avalanche photodiodes (APDs) on InP substrates with 1000 nm thick multiplier layers. The AlGaAsSb APDs were grown by molecular beam epitaxy using a digital alloy technique (DA) to avoid phase separation. Current-voltage measurements give a peak gain of ~ 42, a breakdown voltage of – 54.3 V, and a dark current density at a gain of 10 of ~ 145 μA/cm2. Excess noise measurements of multiple AlGaAsSb APDs show that k (the ratio of electron and hole impact ionization coefficients) is ~ 0.01. This k-value is comparable to Si, which is widely used for visible and near-infrared APDs. The low dark current density and low excess noise suggest that such thick AlGaAsSb layers are promising multipliers in separate absorption, charge and multiplication (SACM) structures for short-wavelength infrared applications such as optical communication and LIDAR, particularly on a commercial InP platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.