Abstract

Reinforcement learning requires the dynamic interplay of several specialized networks distributed across the brain. A potential mechanism to establish accurate temporal coordination among these paths is through the synchronization of neuronal activity to a common rhythm of neuronal firing. Previous EEG studies have suggested that theta oscillatory activity might be crucial in the integration of information from motivational and attentional paths that converge into the medial Prefrontal Cortex (mPFC) during reward-guided learning. However, due to the low spatial resolution of EEG, this hypothesis has not been directly tested. Here, by combining EEG and fMRI, we show that theta oscillations serve as common substrate for the engagement of separated sub-regions within the mPFC (the pre-Supplementary Motor Area and the dorsomedial Prefrontal Cortex), underlying different cognitive operations (encoding of outcome valence and unsigned prediction errors) through separate functional paths (the Salience and the Central Executive Networks).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.