Abstract

Non-invasive myelin water fraction (MWF) and g-ratio mapping using microstructural MRI have the potential to offer critical insights into brain microstructure and our overall understanding of neuroplasticity and neuroinflammation. By leveraging a unique panel of variably hypomyelinating mouse strains, we validated a high-resolution, model-free image reconstruction method for whole-brain MWF mapping. Further, by employing a bipolar gradient echo MRI sequence, we achieved high spatial resolution and robust mapping of MWF and g-ratio across the whole mouse brain. Our regional white matter-tract specific analyses demonstrated a graded decrease in MWF in white matter tracts which correlated strongly with myelin basic protein gene (Mbp) mRNA levels. Using these measures, we derived the first sensitive calibrations between MWF and Mbp mRNA in the mouse. Minimal changes in axonal density supported our hypothesis that observed MWF alterations stem from hypomyelination. Overall, our work strongly emphasizes the potential of non-invasive, MRI-derived MWF and g-ratio modeling for both preclinical model validation and ultimately translation to humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.