Abstract

A method of measuring the thermovoltaic effect in heterogeneous media with gradient doping impurity distributions producing gradient carrier distributions has been proposed. Iron doped zinc oxide specimens have been produced using ion beam sputtering on thin foil tantalum substrates for thermovoltaic effect measurements, glass-ceramic substrates for Hall measurements and silicon substrates for structural study. The doping impurity concentration хFe in the specimens has been varied from 0.34 to 4.18 at.%. X-ray phase analysis has shown that all the specimens have a hexagonal zinc oxide crystal structure. The films have preferential [002] orientation. The carrier concentration in the experimental specimen layers according Hall data obtained on an ECOPIA 5500 measurement system in a 0.5 T DC magnetic field has varied in the 1016–1020 cm-3 range. The specimens have an n-type conductivity. Thermovoltaic measurements have been carried out for two-layered iron doped zinc oxide specimens with different carrier and iron doping impurity concentrations using the method proposed. The maximum thermovoltaic response (U ~ 80 μV) has been observed in the two-layered thin-film specimen with the carrier concentration difference between the layers (Δn ≈ 2∙103 cm-3). The observed saturation of the thermovoltaic response has been attributed to the establishment of dynamic equilibrium between carrier diffusion from the high carrier concentration layer to the low carrier concentration layer and carrier drift due to internal electric field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.