Abstract

Polymer flooding represents one of the most efficient processes to enhance oil recovery, but the poor thermostability and salt tolerance of the currently used water-soluble polymers impeded their use in high temperature and salinity oil reservoirs. Thermoviscosifying polymers (TVPs) whose viscosity increases upon increasing temperature and salinity may overcome the deficiencies of most water-soluble polymers. A novel TVP was studied in comparison with traditional partially hydrolyzed polyacrylamide (HPAM) in synthetic brine regarding their rheological behaviors and core flooding experiments under simulated high temperature and salinity oil reservoir conditions (T: 85 °C, and total salinity: 32,868 mg/L, [Ca2+] + [Mg2+]: 873 mg/L). It was found that with increasing temperature, both apparent viscosity and elastic modulus of the TVP polymer solution increase, while those of the HPAM solutions decrease. Such a difference is attributed to their microstructures formed in aqueous solution, which were observed by cryogenic transmission electron microscopy. Core flow tests at equal conditions showed an oil recovery factor of 13.5 % for the TVP solution versus only 2.1 % for the HPAM solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.