Abstract

The thermotropic behavior of poly(oxyethylene) cholesterol ether surfactants was studied by differential scanning calorimetry and small-angle X-ray scattering. Contrary to what is usually observed in conventional poly(oxyethylene)-type surfactant systems, poly(oxyethylene) cholesterol ether surfactants show a change of the fusion mechanism as the chain length is varied. For long chain lengths (n≥15) the usual solid–liquid transition is found, but for short chain lengths (n≤10) the transition goes through a birefringent lamellar phase. The appearance of this liquid crystal (LC) phase seems to be related with the predominance of the cholesterol part in the short chain polyoxyethylene surfactants. On the contrary, for long polyexyethylene chains the polymer gains in importance and only a solid crystalline structure is observed at low temperatures. An antiparallel packing structure with totally overlapped chains is found for both, the solid and the LC phase. The chains seem to be in a zigzag configuration, and only for the longest surfactant here studied (n=30) a change of the chain configuration to a much shorter meander configuration is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.