Abstract

Finite thermostats are studied in the context of nonequilibrium statistical mechanics. Entropy production rate has been identified with the mechanical quantity expressed by the phase space contraction rate and the currents have been linked to its derivatives with respect to the parameters measuring the forcing intensities. In some instances Green–Kubo formulae, hence Onsager reciprocity, have been related to the fluctuation theorem. However, mainly when dissipation takes place at the boundary (as in gases or liquids in contact with thermostats), phase space contraction may be independent on some of the forcing parameters or, even in absence of forcing, phase space contraction may not vanish: then the relation with the fluctuation theorem does not seem to apply. On the other hand phase space contraction can be altered by changing the metric on phase space: here this ambiguity is discussed and employed to show that the relation between the fluctuation theorem and Green–Kubo formulae can be extended and is, by far, more general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.