Abstract
The boundary layer flow, heat and mass transfer over a permeable stretching sheet due to a chemically reacting micropolar fluid with slip and convective boundary conditions have been analyzed. Transverse magnetic field clubbed with electric field is also considered for the sake of brevity. Governing nonlinear coupled PDEs are transformed to nonlinear ODEs with the use of suitable similarity transformation. However, analytical solutions to these transformed equations are not useful therefore; numerical solution is carried out using Runge-Kutta fourth order with shooting technique. The characteristics of the embedded parameters are obtained and presented through graphs. Validation of the proposed work with earlier established results are shown in tables and these are in good agreement. From the careful observation the major outcomes are: induced magnetic field decelerates the flow, enhances the thickness of thermal boundary layer temperature whereas applied electric field decelerates the thickness of thermal boundary layer. Both electric field and slip parameter accelerates the angular momentum. Temperature and concentration magnitudes are accelerated at the sheet with an increase of slip parameter. Furthermore, Schmidt number and first order chemical reaction reduces the concentration boundary layer thickness. PACS Number: 05.45-a; 05.70-Ce.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have