Abstract

Double diffusive mixed convection in a horizontal channel with backward facing step is analyzed using velocity-vorticity formulation with a focus on the effect of recirculatory flow pattern on convective heat and mass transfer. The governing equations consist of vorticity transport equation with thermal and solutal buoyancy force terms, velocity Poisson equations, energy equation, and solutal concentration equation. Galerkin's weighted residual finite-element method has been employed to solve the equations for vorticity, velocity, temperature, and concentration fields in the computational domain. Test results are obtained to study the effect of thermal Grashof number (Gr T ), solutal Grashof number (Gr S ), and expansion ratio on the average Nusselt and Sherwood numbers. Results indicate that the convective heat transfer increased with increase in Gr T only when the Gr S number is in the aiding mode. The maximum local Nusselt number is always observed to be located adjacent to the downstream of the fluid reattachment point. Using the matched method of asymptotic expansions, correlations have also been developed for average Nusselt and Sherwood numbers for both cases of aiding and opposing buoyancy forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.