Abstract
A nonionic double hydrophilic block copolymer with a long permanently hydrophilic and a small thermoresponsive block is synthesized by reversible addition-fragmentation chain-transfer polymerization (RAFT). By employing a specifically designed chain-transfer agent, the polymer is functionalized with complementary end groups which are suited for Förster resonance energy transfer (FRET). The end group attached to the permanently hydrophilic block of poly(N,N-dimethylacrylamide) pDMAm is designed as a permanently hydrophobic segment ("sticker") comprising a long alkyl chain and the 4-aminonaphthalimide fluorophore. The other end attached to the thermoresponsive block of poly(N-isopropylacrylamide) pNiPAm incorporates a coumarin fluorophore. The temperature-dependent self-assembly of the twofold fluorescently labeled copolymer is studied in pure aqueous solution as well as in an o/w microemulsion by several techniques including turbidimetry, dynamic light scattering (DLS), and fluorescence spectroscopy. It is compared to the behaviors of the analogous twofold-labeled pDMAm and pNiPAm homopolymer references. The findings indicate that the block copolymer behaves as a polymeric surfactant at low temperatures, with one relatively small hydrophobic end block and an extended hydrophilic chain forming "hairy micelles". At elevated temperatures above the LCST phase transition of the pNiPAm block, however, the copolymer behaves as an associative telechelic polymer with two nonsymmetrical hydrophobic end blocks, which do not mix. Thus, instead of a network of bridged "flower micelles", large dynamic aggregates are formed. These are connected alternatingly by the original micellar cores as well as by clusters of the collapsed pNiPAm blocks. This type of structure is even more favored in the o/w microemulsion than in pure aqueous solution, as the microemulsion droplets constitute an attractive anchoring point for the hydrophobic dodecyl sticker but not for the collapsed pNiPAm chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.