Abstract

To overcome the current scarcity of fresh water sustainably, new technologies will be required that produce potable water from a range of sources, including seawater and moisture from the atmosphere. Moreover, we must recover and reuse water from wastewater streams to reduce our global water footprint. To date, there remain significant concerns about the environmental/ecological impact, high energy consumption, and extensive maintenance costs of current technologies that might prevent their transition to more sustainable routes of potable water generation. One class of material that can enable low-energy water production is thermoresponsive polymers. Due to their unique phase behavior, production flexibility, and biocompatibility, these materials may allow for sustainable routes to fresh water in current and new technologies. In this Perspective, we specifically summarize the design and application of poly(N-isopropylacrylamide)- (PNIPAm-) based thermoresponsive microgels and hydrogels. In particular, we show how these materials have been used for water purification, including wastewater treatment, seawater desalination, and moisture harvesting from the atmosphere. Finally, we discuss the opportunities and challenges of transforming current thermoresponsive materials into practical water-related technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.