Abstract
Thermoresponsive and degradable hydrogels are considered promising materials for the development of smart drug delivery carriers that can be applied in the human body. However, the synthesis of a thermoresponsive degradable hydrogel with desirable properties is challenging. Here, we prepared thermoresponsive degradable copolymers and hydrogels by radical copolymerization of 2-methylene-1,3-dioxepane and N,N-dimethylacrylamide. The obtained polymers exhibited low critical solution temperature-type phase separation and a swelling-deswelling behavior. Under alkaline conditions (pH 11.3), these materials degraded and turned into water-soluble oligomers. In addition, the hydrogels self-degraded in PBS due to the decreased pH of the inner hydrogel. The prepared thermoresponsive degradable polymers and hydrogels have potential applicability as stimuli-responsive drug delivery carriers and cell culture scaffolds. Thermoresponsive degradable copolymers and hydrogels were synthesized by radical copolymerization of 2-methylene-1,3-dioxepane (MDO) and N,N-dimethylacrylamide (DMAAm). These prepared materials showed thermoresponsive property through the balance of hydrophobic MDO and hydrophilic DMAAm in the polymer chain. Under alkaline conditions (pH 11.3), these materials degraded and turned into water-soluble oligomers. In addition, the hydrogels self-degraded in PBS due to the decreased pH of the inner hydrogel. The prepared thermoresponsive degradable hydrogels are expected as stimuli-responsive drug delivery carriers and cell culture scaffolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.