Abstract
Graft copolymers with brush-type architectures are explored containing poly(ethylene glycol) methacrylates copolymerized with “thermoresponsive” monomers which impart lower critical solution temperatures to the polymer. Initially, the chemical structure of the thermoresponsive polymer is explored, synthesizing materials containing N-isopropyl acrylamide, N,N-diethyl acrylamide and diethylene glycol methyl ether methacrylate. Thermoresponsive graft-copolymers containing di(ethylene glycol) methyl ether methacrylate (DEGMA) exhibited phase transition temperature close to physiological conditions (ca 30 °C). The effect of polymer composition was explored, including molecular weight, PEG-methacrylate (PEGMA) terminal functionality and PEGMA/DEGMA ratios. Molecular weight exhibited complex relationships with phase behavior, where lower molecular weight systems appeared more stable above lower critical solution temperatures (LCST), but a lower limit was identified. PEGMA/DEGMA feed was able to control transition temperature, with higher PEGMA ratios elevating thermal transition. It was found that PEGMA terminated with methoxy functionality formed stable colloidal structures above LCST, whereas those the hydroxy termini generally formed two-phase sedimented systems when heated. Two thermoresponsive DEGMA-based graft polymers, poly(PEGMA7-ran-DEGMA170) and poly(PEGMA1-ran-DEGMA38), gave interesting temperature-dependent rheology, transitioning to a viscous state upon heating. These materials may find application in forming thermothickening systems which modify rheology upon exposure to the body’s heat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.