Abstract

Purpose: The focus of this work is to develop a unique drug delivery vehicle which can be taken up by cancer cells and can release the loaded drug. Methods: Core-shell composite nanoparticles have been prepared by one-step Pickering emulsion polymerization with a nonionic initiator, using silica as the sole stabilizer. More importantly, the Pickering emulsion polymerization is applied to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. Results: The composite nanoparticles are temperature sensitive and can be taken up by human prostate cancer (PC3 and PC3-PSMA) cells. An anticancer agent 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) has been loaded into the polymeric cores during formation of the nanoparticles and drug release has been successfully observed at elevated temperatures. The ability of the various nanoparticles for inducing death in human prostate cancer cells has been evaluated. Conclusion: The work has demonstrated the temperature sensitivity, controlled drug release properties of the synthesized core-shell nanoparticles, and their effectiveness for inducing death of human prostate cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.