Abstract

Starch-based biodegradable foams with a high starch content are developed using industrial starch as the base material and supercritical CO2 as blowing or foaming agents. The superior cushioning properties of these foams can lead to competitiveness in the market. Despite this, a weak melting strength property of starch is not sufficient to hold the foaming agents within it. Due to the rapid diffusion of foaming gas into the environment, it is difficult for starch to maintain pore structure in starch foams. Therefore, producing starch foam by using supercritical CO2 foaming gas faces severe challenges. To overcome this, we have synthesized thermoplastic starch (TPS) by dispersing starch into water or glycerin. Consecutively, the TPS surface was modified by compatibilizer silane A (SA) to improve the dispersion with poly(butylene adipate-co-terephthalate) (PBAT) to become (TPS with SA)/PBAT composite foam. Furthermore, the foam-forming process was optimized by varying the ratios of TPS and PBAT under different forming temperatures of 85 °C to 105 °C, and two different pressures, 17 Mpa and 23 Mpa were studied in detail. The obtained results indicate that the SA surface modification on TPS can influence the great compatibility with PBAT blended foams (foam density: 0.16 g/cm3); whereas unmodified TPS and PBAT (foam density: 0.349 g/cm3) exhibit high foam density, rigid foam structure, and poor tensile properties. In addition, we have found that the 80% TPS/20% PBAT foam can be achieved with good flexible properties. Because of this flexibility, lightweight and environment-friendly nature, we have the opportunity to resolve the strong demands from the packing market.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.