Abstract

The mechanical, morphological and biodegradation properties of two types of poly(ε-caprolactone)/sago starch (PCL/sago) composites were investigated i.e. dried granulated sago starch and undried thermoplastic sago starch (TPSS). Thermoplastic starch was extruded with a twin screw extruder model Haake Rheomix (TW100 attached to a Haake Rheometer (Haake Rheodrive 5000). The composites were compounded with a Haake internal mixer (Haake Rheomix 3000) attached to the Haake Rheometer. Tensile properties were determined with the Monsanto Tensometer T10. A Shimadzu UV-160A visible UV spectrophotometer was used to monitor the liberation of carbohydrate as a consequence of starch hydrolysis by α-glucoamylase. Determining the weight loss of composites as well as the acid liberated from PCL also monitored biodegradation. The results indicate that dried granulated sago starch function better as fillers in terms of mechanical properties and the ease of biodegradation. However, TPSS imparted better yield strength to the composites. Poor wetting of starch accounts for the decreased mechanical properties at higher starch concentration as agglomeration occurs. While the rigid granular starch retained their shape in the composites, thermoplastic starch that is surrounded by microvoids is easily deformed due to plasticization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call