Abstract

AbstractCurrently, the fabrication of microcell and bimodal cell structures (BCS) in polymer foams by using supercritical fluids has become a hot as well as a challenging research area worldwide. In this work, an environmentally friendly, effective, facile, and CO2‐based foaming technique was presented to fabricate microcellular polypropylene (PP) foams with BCS via blending with thermoplastic polyurethane (TPU). The toughness, thermal properties, rheological properties, and foamability of PP were systematically investigated with gradual incorporation of TPU. Representative sea‐island structure was observed in the scanning electron microscopy (SEM) images for the fracture surface of various PP/TPU samples. Rheological measurement results demonstrated that the viscoelasticity of various PP/TPU samples was improved remarkably compared with that of pure PP and pure TPU. The impact strength of various PP/TPU samples possessed the highest value as 12.4 kJ/m2with the TPU content of 15 wt%. After the addition of TPU, an ameliorative cellular morphology was observed in the SEM micrographs of various PP/TPU samples and their volume expansion ratio was enhanced significantly thanks to their improved melt elasticity. Moreover, it is worth noting that BCS appeared in various PP/TPU foams when the TPU content exceeded 5 wt%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.