Abstract

Thermoplastic polyurethane (TPU) composites are significant as they offer a variety of applications depending on the incorporated fillers. Herein, doubly filled thermoplastic polyurethane (TPU) based composites were studied for their improved electrical and thermal conductivity upon the addition of MWCNT and antimony doped tin oxide nanoparticles. By the addition of conducting fillers the electrical conductivity of TPU blends improved to semiconductor range 10 °S/cm. The highest recorded value of thermal conductivity 0.36 W/m × K at 10 phr of MWCNTs/ATOs (70:30) is due to higher dispersion, crystallinity, degree of interfacial thermal contact between the components, and scattering of phonons. Keeping in view its applications in electronic components we focus on the development of composites in the semiconductor range of S/cm value for electrical conductivity. Thermal stability, Tm and Tc of TPU/MWCNTS/ATOs composites increased due to the improved dispersion of MWCNTs and ATOs in TPU matrix. Morphological studies show, that increase of ATOs share in the fillers mixture up to 50 % supports homogeneous dispersion of the fillers. There was only a small decrease in electrical conductivity observed at medium ATOs percentage, which makes these composites highly cost effective. With 70:30 ratio of MWCNTs and ATOs the cost of the filler phase drops down without marked decrease in electrical conductivity. Such nanocomposites would be highly cost-effective for applications in flexible electronic displays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call