Abstract

AbstractThermoplastic polyurethane (TPU) copolymers are interesting host matrices for the incorporation of conductive carbon black (CB) particles. The two‐phase character of the TPU systems provides an opportunity for the CB particles to distribute nonuniformly within the phases, owing to their different characteristics. Thus, in spite of its highly polar nature, the TPU/CB system percolates at a relatively low CB content. The CB presence affects the TPU two‐phase structure, resulting in a large change of its low temperature loss modulus. CB‐containing extruded filaments produced by a capillary rheometer at various shear rates were studied as sensing materials for different alcohols. All filaments displayed an increase in resistance upon exposure to various alcohols. Filaments exposed to methanol exhibited the highest sensitivity. This behavior was related to the sorption kinetics by the TPU/CB compound, which is affected by the different characteristics of the solvents. The resistance of filaments exposed to ethanol or methanol tended to reversibility during the drying cycle, returning to the initial values. The relatively rapid recovery to the filaments' initial resistance values (for methanol and ethanol) suggests that the structural changes due to solvent sorption mainly occur in the outer skin regions of the extruded filaments, whereas the core region remains essentially intact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.