Abstract

A cured vinyl ester resin containing electrically conductive carbon black (CB) particles shows electrical percolation at very low CB concentration (<0.5 phr). CB particles have a strong tendency to agglomerate in a low-viscosity resin, such as vinyl ester, unsaturated polyester resin, and epoxy resins. The agglomeration process in the low-viscosity vinyl ester resin generates electrically conductive paths already in the resin's liquid state, which undergo partial fixation by room temperature curing and full fixation by hot postcuring. The fully cured castings containing CB concentrations above percolation are characterized by a constant, temperature-independent conductivity, over a wide temperature range. The current–voltage relationships of the cured vinyl ester/CB castings obey a power-law dependency. The presence of the continuous CB paths in the vinyl ester casting is clearly observed in fracture surfaces formed at 100°C. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1165–1170, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.