Abstract

AbstractThermoplastic elastomer (TPE)–clay nanocomposites based on poly[styrene–(ethylene‐co‐butylene)–styrene] triblock copolymer (SEBS) were prepared. Natural sodium montmorillonite (MMT) clay was organically modified by octadecyl amine to produce an amine‐modified hydrophobic nanoclay (OC). Commercially available Cloisite 20A (CL20) and Cloisite 10A, tallow ammine modified nanoclays, were also used. The intergallery spacing of MMT increased on amine modification as suggested by the shifting of the X‐ray diffraction (XRD) peak from 7.6 to 4.5 and 3.8° in the cases of OC and CL20, respectively. The latter demonstrated no XRD peak when it was used at 2 and 4 parts phr in the SEBS system. Transmission electron microscopy studies showed the intercalation–exfoliation morphology in SEBS containing 4 parts of CL204–SEBS, agglomeration in SEBS having 4 parts of MMT, and mixed morphology in SEBS with 4 parts of OC systems. Locations of the clay particles were indicated by the atomic force micrographs. Mechanical and dynamic mechanical thermal analysis studies confirmed the best properties with the CL204–SEBS nanocomposites. Significant improvements in mechanical properties such as tensile strength, modulus, work to break, and elongation at break were achieved with the CL204–SEBS in polymer‐layered silicate nanocomposites. Dynamic mechanical studies further showed the affinity of the organoclays toward both segments of the TPE and a compatibilization effect with CL20 at a 4‐phr loading. Atomic force microscopy showed distinctly different morphologies in nanocomposites prepared through solution and melt processing. Comparisons of the mechanical, dynamic mechanical, and morphological properties of the nanocomposites prepared by melt and solution intercalation processes were done. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2040–2052, 2006

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call