Abstract
Regulating stem cell differentiation in a controllable way is significant for regeneration of tissues. Herein, we report a simple and highly efficient method for accelerating the stem cell differentiation of dental pulp stem cells (DPSCs) based on the synergy of the electromagnetic field and the photothermal (thermoplasmonic) effect of plasmonic nanoparticles. By simple laser irradiation at 50 mW/cm2 (10 min per day, totally for 5 days), the thermoplasmonic effect of Au nanoparticles (AuNPs) can effectively regulate mitochondrial metabolism to induce the increase of mitochondrial membrane potential and further drive energy increase during the DPSC differentiation process. The proposed method can specifically regulate DPSCs' cell differentiation toward odontoblasts, with the differentiation time reduced to only 5 days. Simultaneously, the molecular profiling change of mitochondria within DPSCs during the cell differentiation process is revealed by in situ surface-enhanced Raman spectroscopy. It clearly demonstrates that the expression of hydroxyproline and glutamate gradually increases with prolonging of the differentiation days. The developed method is simple, robust, and rapid for stem cell differentiation of DPSCs, which would be beneficial to tissue engineering and regenerative medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.