Abstract

Compared to nanozymes with single enzyme activity, those with multiple enzyme activities possess broader application potential due to their diversified enzymatic functionalities. However, the multienzyme nanozymes currently face challenges of interference among different enzymatic activities during practical applications. In this study, we report the synthesis of a light-responsive YbGd-carbon quantum dots nano-hybrid, termed YbGd-CDs, which exhibits controllable enzyme-mimicking activities. This light-responsive behavior enables selective control of the enzymatic activities. Under visible light irradiation, YbGd-CDs demonstrate robust oxidase-like activity. Conversely, under dark conditions, they primarily exhibit peroxidase-like activity. Leveraging the dual-enzyme-mimicking capabilities of YbGd-CDs, we developed colorimetric assays for sensitive detection of total antioxidant capacity (TAC) in both normal and cancer cells as well as d-amino acids in human saliva. This study not only advances the synthesis of carbon-based nanozymes but also highlights their potential in biosensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.