Abstract
The electrodynamics of single-layer graphene is studied in the scaling regime. At any finite temperature, there is a weakly damped collective thermoplasma polariton mode whose dispersion and wavelength-dependent damping is determined analytically. The electric and magnetic fields associated with this mode decay exponentially in the direction perpendicular to the graphene layer, but, unlike the surface plasma polariton modes of metals, the decay length and the mode frequency are strongly temperature-dependent. This may lead to new ways of generation and manipulation of these modes.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have