Abstract

Using electromagnetic levitation in combination with the oscillating drop technique and drop calorimeter method, the surface tensions and specific heats of undercooled liquid Co-10 wt% Mo, Co-26.3 wt% Mo, and Co-37.6 wt% Mo alloys were measured. The containerless state during levitation produces substantial undercoolings up to 223 K (0.13 T L), 213 K (0.13 T L) and 110 K (0.07 T L) respectively for these three alloys. In their respective undercooling ranges, the surface tensions were determined to be 1895 m0.31(T m1744), 1932 m0.33(T m1682), and 1989 m0.34(T m1607) mN m−1. According to the Butler equation, the surface tensions of these three Co-Mo alloys were also calculated, and the results agree well with the experimental data. The specific heats of these three alloys are determined to be 41.85, 43.75 and 44.92 J mol−1 K−1. Based on the determined surface tensions and specific heats, the changes in thermodynamics functions such as enthalpy, entropy and Gibbs free energy are predicted. Furthermore, the crystal nucleation, dendrite growth and Marangoni convection of undercooled Co-Mo alloys are investigated in the light of these measured thermophysical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.