Abstract
Experimentally determining thermophysical properties for various compositions commonly found in CO2 transportation systems is extremely challenging. To overcome this challenge, we performed Monte Carlo (MC) and Molecular Dynamics (MD) simulations of CO2 rich mixtures to compute thermophysical properties such as densities, thermal expansion coefficients, isothermal compressibilities, heat capacities, Joule-Thomson coefficients, speed of sound, and viscosities at temperatures of (235-313) K and pressures of (20-200) bar. We computed thermophysical properties of pure CO2 and CO2 rich mixtures with N2, Ar, H2, and CH4 as impurities of (1-10) mol % and showed good agreement with available Equations of State (EoS). We showed that impurities decrease the values of thermal expansion coefficients, isothermal compressibilities, heat capacities, and Joule-Thomson coefficients in the gas phase, while these values increase in the liquid and supercritical phases. In contrast, impurities increase the value of speed of sound in the gas phase and decrease it in the liquid and supercritical phases. We present an extensive data set of thermophysical properties for CO2 rich mixtures with various impurities, which will help to design the safe and efficient operation of CO2 transportation systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.